Cantiknya kucing-kucing ni. Dok wat benda tu? Kalau tengok anak-anak kucing ni, rasa nyaman sikit kepala. Depa manja dan menghiburkan. Tetapi kalau tengok soalan Addmath, aduh sakitnya kepala. Berdenyut-denyut.
Dipendekkan cerita, sakit kepala ke, sakit mata ke, sakit kepala lulut ke, jom kita belajar Addmath.
Dalam siri (1) dahulu,
MENGENAL FUNGSI KUADRATIK (QUADRATIC FUNCTION) SIRI 1, saya telah menerangkan
cara bagaimana mencari titik bucu (vertec) bagi sesuatu graf. Anda patut
belajar dengan lebih mahir cara tersebut, kerana ia menolong anda menjadi pakar
Addmath suatu masa nanti.
Mari kita tengok soalan
berikut.
SOALAN PERTAMA
Find the vertex and intercepts of y = 3x2 + x – 2 and graph; remember to label the vertex and the axis of symmetry.
Find the vertex and intercepts of y = 3x2 + x – 2 and graph; remember to label the vertex and the axis of symmetry.
How
to get the y intercept? Take x = 0. Put x = 0
into the original equation. So you get y = 3 0)2 + 0 - 2 = -2.
Then the y-intercept is the point (0, –2).
How
to find the x-intercept?, just set y
equal to zero or y = 0, and solve:
0 = 3x2 + x – 2
By using your calculator, you will get x = -1,
2/3
Then the x-intercepts
are at the points (–1, 0) and ( 2/3, 0).
How
to find the axis-symentry?
Ada
2 cara (method) yang boleh digunakan.
[1]
CARA MUDAH CIKGU
Dalam persamaan kat
atas, a = 3, b =1, c = -2
so, x = - b/2a
x = - 1/2(3) = - 1/6
maka x = -1/6
[2]
CARA BIASA DALAM KELAS
The axis of symmetry is
halfway between the two x-intercepts at (–1, 0) and at ( 2/3
, 0); So by using this formula
x = (x1 + x2) /
2.
we can get x =
(–1 + 2/3) / 2 = (–1/3) / 2 = –1/6
To find
the vertec? Sebelum ini awak
dah dapat x = -1/6. Masukan sahaja ke dalam persamaan asal.
y = 3x2
+ x – 2
y = 3(-1/6) 2
+ (-1/6) – 2
y = -25/12
Koordinat bucu (vertc)
= (-1/6, -25/12).
What's
your listing answer?
The complete answer is
a listing of the vertex, the axis of symmetry, and all three intercepts, along
with a nice neat graph:
The vertex is at ( –1/6
, –25/12 ), the axis of symmetry is the line x = –1/6 ,
and the intercepts are at (0, –2), (–1, 0), and ( 2/3, 0).
Menggunakan semua maklumat di atas, sila bina
graf yang sesuai dari persamaan di atas. Buat sendiri sampai jadi. He2.
MARI KITA TENGOK CONTOH KEDUA. Anda jangan panik
dan takut. Tenang-tenang jew. Otak mesti kosong dari sebarang tanggapan
negatif. Kalau dok kata payah, susah dan sebagainya, sampai bila pun anda tak
dapat skor Addmath. Sebelum kita melihat soalan kedua tu, elok kita tengok kucing seekor ni. Comelnya. .Dia sedang bercakap dengan 2 ekor anak itik.
SOALAN KEDUA
Find the intercepts, the axis of symmetry, and vertex of y = x2 – x – 12.
Find the intercepts, the axis of symmetry, and vertex of y = x2 – x – 12.
To
find the y-intercept, set x
equal to 0 (take x = 0) and solve:
Then you get y = -12
So, the point = (0, -12)
To
find the x-intercept, set y
equal to 0 (take y = 0) and solve:
0 = x2 – x – 12.
Use your calculator,
so you get x = 4 and -3.
So, the point = (4,
0) and (-3, 0)
To find the vertex, please look at the coefficients: a = 1 and b = –1.
Plugging into the
formula x = -b/2a,
so you get x = - (-1) /
(2X1) = -1/2
To find the value of y,
just plug or put x = 1/2 into the
equation y = x2 – x – 12, and simplify
it. You will then get y = -12.25
So, the vertec (bucu) =
( 1/2, -12.25)
To find the axis
symentry, refer to x = 1/2 as you get before
so, the axis symentry, x = 1/2.
Whats your lisitng answer?
The vertex is
at the point (0.5, –12.25),
the axis of
symmetry is the line x = 0.5,
and the intercepts
are at the points (0, –12), (–3, 0), and (4, 0).
Saya harap anda sudah faham sedikit sebanyak
berkenaan tajuk ini. Jangan bazirkan apa yang saya berikan kepada anda di sini.
Fahami dan gunakan apa yang anda dapat.
Sebagai pengesahan bahawa anda faham, tolong
siapkan tutorial di bawah. Cari semua maklumat yang diperlukan seperti berikut
: y-intercept, x-intercept, axis of symentry and the vertec.
[1]. y
= 3x2 + x – 10.
[2]. y
= 2x2 – 9x + 12.
[3] y
= 3x2 + x – 12.
Sekian. Terima kasih.
DI RUMAH. 2.2.2013. 8.56 AM.
This comment has been removed by the author.
ReplyDelete