Saya suka menjelaskan lebih awal. Persamaan Kuadratik (PK) ini ada 2 bahagian utama. Saya namakan sebagai berikut :
BAHAGIAN A (2 PUNCA MEMBENTOK 1 PERSAMAAN)
KOD 2R
BAHAGIAN B (1 PERSAMAAN MENCARI 2 PUNCA)
KOD 1E
Dalam bahagian pertama ini, saya akan fokus kepada bahagian A dengan menggunakan kod 2R (maksudnya 2 ROOTS atau 2 punca).
BAHAGIAN A (2 PUNCA MEMBENTOK 1 PERSAMAAN) KOD 2R
Q1. Given that 3 and -5 are the roots of the equation. Form the equation
TUGAS ANDA : TUKAR TANDA PADA PUNCA-PUNCA DIBERI
(X -3) (X + 5) = 0
X2 + 2X - 15 = 0
Q2. Given that -4 and 5 are the roots of the equation. Form the equation
(x + 4) (x - 5) = 0
x2 - x - 20 = 0
Q3. Given that -1 and -2 are the roots of the equation. Form the equation
(x + 1) (x + 2) = 0
x2 + 2x + 1x + 2 = 0
x2 + 3x + 2 = 0
BAHAGIAN B (1 PERSAMAAN MENCARI 2 PUNCA) KOD 1E
BILA ANDA TERLIHAT SAHAJA ADA PERSAMAAN KUADRATIK DIBERIKAN, ANDA MESTI GUNAKAN KOD 1E (bermaksud 1 Equation atau 1 persamaan)
TUJUANNYA : MENCARI PUNCA ATAU ANU YANG TERSEMBUNYI..
Q1. Given that m and 3 are the roots for the equation x2 + 4x - k = 0. Find m and k
Daripada x2 + 4x - k = 0
a = 1, b = 4, c = -k
SUM OF ROOTS (SOR) = - b / a [INI SYARAT UTAMA]
m + 3 = - (4/1)
m + 3 = -4
m = -7
PRODUCT OF ROOTS (POR) = c/a [INI SYARAT UTAMA]
(m)(3) = (-k / 1)
3m = -k, maka k = -3m
= (-3)(-7) = 21
Q4. Given that 2 and -m are the roots for the equation 3x2 + kx + 11 = 0. Find m and k.
Daripada 3x2 + kx + 11 = 0
a = 3, b =k, c = 11
SUM OF ROOTS (SOR) = -b/a
2 + (-m) = - b/a
2 - m = - (k / 3)
- k = 3 (2 - m) = 6 - 3m
So k = -6 + 3m = 3m - 6 [PERSAMAAN 1]
PRODUCT OF ROOTS (POR) = c/a
(2) (-m) = c / a
- 2m = 11 / 3
m = - 11 / 6 [PERSAMAAN 2]
Masukkan [2] ke dalam [1], k = 3m - 6
k = 3 (- 11 / 6) - 6
k = - 11 / 2 - 6
k = - 23 / 2
Q5. Given that m and n are the roots for the equation 3x2 - 4x + 16 = 0. Find m and n, where n is positive.
Daripada 3x2 - 4x + 16 = 0
a = 3, b = -4, c = 16
SUM OF ROOTS (SOR) = -b/a
m + n = - (-4 / 3) = 4/3
m + n = 4 / 3 [PERSAMAAN 1]
PRODUCT OF ROOTS (POR) = c/a
(m)(n) = 16 / 3 [PERSAMAAN 2]
DARIPADA [1], m = (4 / 3) - n
masukkan ke dalam [2]
[(4 / 3) - n] (n) = 16 / 3
4n / 3 - n2 - 16 / 3 = 0
- n2 + 4n / 3 - 16/3 = 0
so a = -1, b = 4/3 = 1.3333, c = -16/3 = -5.3333
Guna kalkulator,anda akan perolehi nilai n = 0.6667
Kemudian cari nilai m, m = (4/3) - 0.6667
so m = 0.6666.
SEKIRANYA ANDA INGIN MEMBERI KOMEN / RESPONS KEPADA ARTIKEL DI ATAS, SILA PILIH "COMMENT AS" DI BAWAH SEBAGAI ANONYMOUS ATAU NAME / URL. TAIP NAMA & ABAIKAN URL. TQ
No comments:
Post a Comment